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Synopsis 

The loss tangent corresponding to small sinusoidal oscillations superposed on a large static de- 
formation is found to decrease with increasing static deformation ratio for a natural rubber gum 
vulcanizate. Further, the response functions of the stress-relaxation and the incremental stress- 
relaxation vs. time and the storage modulus vs. frequency are found not to be separable functions 
of time and strain effects. These findings are shown to indicate that the elastic contribution to the 
viscoelastic response of this elastomer increases more rapidly with the static deformation than does 
the relaxation contribution. The loss modulus, however, is found to be a separable function of time 
and strain effects. Hence, only one relaxation function is needed in the viscoelastic constitutive 
theory applied to this elastomer. The finite linear viscoelasticity theory as modified by Morman 
has a form which can account for these results. Predictions of the incremental stress-relaxation 
function from dynamic data are within 1% of experimental values. 

INTRODUCTION 

The storage and loss moduli, corresponding to small sinusoidal oscillations 
superposed on a large static strain, are in general found to be functions of the 
frequency, the dynamic strain amplitude, and the static prestrain. Studies on 
a variety of gum elastomers1s2 indicate that the effects of the dynamic strain 
amplitude on the storage and loss moduli are negligible, but are quite pronounced 
for elastomers containing structured carbon blacks.2-6 For the latter, the 
magnitude of this effect increases with the amount of added filler. Interest in 
the dynamic properties of elastomers corresponding to small sinusoidal oscilla- 
tions superposed on large static deformations has increased.1,68 Although initial 
studies using wave propagation techniquesgJO were confined to the low dynamic 
strain amplitude, high frequency domain (1000 Hz), the increased refinement 
of forced nonresonant servohydraulic testing machines has permitted the in- 
vestigation of the dynamic properties of prestrained elastomers in the frequency 
and dynamic strain amplitude ranges more typical of the conditions encountered 
in many engineering applications of elastomers (strain amplitudes from 0.005 
to 0.05 and frequencies from 0.05 to 100 Hz). 

In a previous report on a carbon-black-filled natural rubber compound,G the 
storage modulus was shown to demonstrate a separability of time, static defor- 
mation, and dynamic strain amplitude effects. However, in addition to an ex- 
pected dynamic strain amplitude dependence,2 the loss tangent was observed 
to be a function of the static deformation. This has also been shown for a filled 
SBR elastomer.* A static deformational dependence of the loss tangent indicates 
that the deformational dependences of the storage and loss moduli are different. 
Different deformational dependences for these moduli are inconsistent with many 
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viscoelasticity theories, where it is assumed that the deformational dependences 
of the elastic and relaxation terms in the constitutive equation are the same. 

In a previous report1 on the natural rubber gum vulcanizate studied here, the 
stress-relaxation and the dynamic mechanical functions were concluded to 
demonstrate a separability of time and strain effects. However, in the para- 
graphs below it will be shown that, although this is true to good approximation, 
in reality the stress-relaxation, the storage modulus, and the incremental 
stress-relaxation functions are not separable functions of time and strain. The 
loss modulus, though, will be shown to be a separable function of these effects. 
For the strain fields of simple tension and pure shear, a set of stress-relaxation 
data to times as short as 0.2 s and dynamic data over a broad frequency range 
for all prestrains permits a more refined determination of material properties 
than was presented before. Also, the implications of these results in regard to 
the form of the viscoelastic constitutive theory required to characterize our 
elastomer is discussed. 

THEORY 

For the conditions of small relative motion superposed on a large static strain, 
the incremental true stress tensor according to the finite linear viscoelasticity 
theory of Coleman and Nollll as modified by Morman12 can be written 

V 
A&) = -Ap(t)E + y B o )  + q B o )  J- q( t  - s)+) ds (1) 

V where AU(t) is the Jaumann stress increment defined as 

The quantities1, B o ,  and _to are the identity, static deformation (Finger's), and 
the small strain tensors, respectively. The fourth rank elasticity and relaxation 
tensors, 0 and r, respectively, are written as a function of the static deformation 
Bo. The term A p ( t )  is the time-dependent pressure, _ae is the equilibrium true 
stress tensor, W is the infinitesimal rotation tensor corresponding to the small 
incremental strain, and t and s are the present and past times, respectively. The 
function g ( t )  is a scalar relaxation function.lJ2 To obtain eq. (1) from the finite 
linear viscoelasticity theory, it has been assumed that the material relaxation 
spectrum, H ( 7 ) ,  is a separable function of time and strain effects.12 Hence, the 
static deformational dependence appears outside the convolution integral in eq. 
(1). Also note that because carbon-black-filled elastomers demonstrate a dy- 
namic strain amplitude dependence, the modified finite linear viscoelasticity 
theory12 cannot be used to characterize such systems. This is a consequence 
of the fact the only linear terms in the small amplitude strain were retained in 
eq. (1). 

Of special interest here is the strain history of small relative motion superposed 
on a large static strain. For uniaxial extension, the deformation ratio for this 
history is 

where 
A ( t )  = X [ l +  E ( t ) ]  (3) 

x = 2/10 (4) 
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and 

~ ( t )  = d ( t ) / l  ( 5 )  

In eqs. (3 ) - (5 ) ,  ~ ( t )  is the true strain, 10 and 1 are the undeformed and deformed 
specimen dimensions, respectively, X is the static deformation ratio, and d( t  ) 
is the small displacement motion. 

When specialized to the above history, eq. (1) yields the following: 

~ ( t )  = Ee(X) + F(X)g ( t )  (6) 

for a small superposed step in strain, and 

El = E,(X) + F(X)G,(o) 

and 

E2 = f(X)G,(w) 

(7)  

for small superposed sinusoidal oscillations. The frequency dependent functions 
appearing in eqs. (7) and (8) are 

G,(w) = w J m g ( t )  sin w t  dt  (9)  

and 

where w (= 27rv) is the angular frequency. Equations (7) and (8) are the storage 
and loss moduli, respectively. Equation (6) is the relaxation modulus and it is 
a function of the static state of strain. The equilibrium modulus is defined 
as 

E, = Xda,/dX (11) 

when ae is the equilibrium true stress. For stress-relaxation corresponding to 
a large step in strain, the modified FLV theory yields1J2 

(12) 

The deformational dependences of the relaxation terms appearing in eqs. (6)-(8) 
and (12) are related as follows: 

F(X) = XdI'/dX (13) 

This results from the linearization of eq. (1) for small relative motion in uniaxial 
extension. 

a ( t )  = a m  + r o ) g ( t )  

EXPERIMENTAL 

The elastomer system reported herein is a natural rubber gum vulcanizate; 
details of the recipe appear e1sewhere.l The tests were conducted with the fol- 
lowing strain history. For Stress-relaxation tests corresponding to large steps 
in strain, the specimen was deformed to a predetermined deformation ratio (A)  
in 50 ms, and stress-relaxation data was collected up to 2000 s. It is assumed 
that essentially all of the relaxation is complete within 2000 s. After the step 
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stress-relaxation test was complete, a small step in strain was superposed. Data 
was collected up to 2000 s. The amplitude of the small step in strain was cal- 
culated from eq. (5) and the condition d ( t )  = d (a constant) for all t >O. For the 
tests reported here, 6 is equal to 0.02. From the small step stress-relaxation data, 
the relaxation modulus at each X is calculated from 

(14) 

where AP(t) is the incremental load relaxation with time, A0 is the undeformed 
cross-sectional area, and ue is the equilibrium true stress, taken to be u 
(2000). L 

After the small step relaxation test was complete, the overall deformation was 
returned to A, and the system was allowed to relax for 10 min. Then small si- 
nusoidal oscillations of varying frequency at a strain amplitude of 0.02 were SU- 

perposed on the static deflection X according to eq. (5), where 

E ( t )  = XAP(t)/(Aoto) + ue 
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Fig. 2. Stress-relaxation data in pure shear for the deformation ratios indicated a t  the right. In 
order to facilitate comparison, a single reference curve has been drawn through each data set. 
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Fig. 3. Stress-relaxation data in simple tension for the deformation ratios indicated a t  the right. 
In order to facilitate comparison, a single reference curve has been drawn through each data set. 

d ( t )  = do sin w t  

Hence, the strain amplitude is 

€0 = do/l  

The tests were conducted at  increasing frequencies, where approximately 30 s 
elapsed a t  zero oscillation before the next frequency was applied. The storage 
and loss moduli were calculated from the data using the following equations, 
respectively7: 

and 

0.4 

0 a 
I 

0.2 - 
w 
(3 
0 
-I 

0.0 

E2 = XAP/(Aoco) sin 6 

I I I I I i 
2.315 

I I I 1 1 I I 

-2.0 0.0 2.0 

LOG v Hz 

Fig. 4. Storage modulus vs. frequency data in pure shear for the prestrains indicated a t  the right. 
In order to facilitate comparison, a single reference curve has been drawn through each data set. 
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Fig. 5. Storage modulus vs. frequency data in simple tension for the deformation ratios indicated 
a t  the right. In order to facilitate comparison, a single reference curve has been drawn through each 
data set. 

where AP is the load sine wave amplitude and 6 is the phase angle between the 
load and the stroke. Tests were conducted in pure shear and simple tension at 
T = 30" f 1 O C .  Details about the test equipment and the procedures necessary 
to reduce noise and to correct for load vs. stroke phase angle errors appear else- 
where.l.6 

RESULTS AND DISCUSSION 

The deformation functions for the elastic and relaxation terms in eq. (12) must 
be equal to zero at X = 1. However, in general these functions need not be the 
same. For a material for which they are not the same, the loss tangent (E2/E1), 
which is the ratio of eq. (8) to eq. (71, would be a function of A. As seen in Figure 
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Fig. 6. Incremental relaxation modulus data in pure shear for the deformation ratios indicated 
a t  the right. In order to facilitate comparison, a single reference curve has been drawn through each 
data set. 
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1, our gum elastomer shows a pronounced prestrain dependence for the loss 
tangent (tan 4). These data represent frequencies of 1 and 10 Hz, and the error 
typical of the measurements is shown by the error bar in the figure. Another 
manifestation of different deformational dependences for the relaxation and 
elastic terms is seen in Figures 2-6. In each figure, a single reference curve has 
been drawn through each data set. This was done in order to facilitate a com- 
parison of the response functions as a function of the prestrain. In all the plots 
(Figs. 2-6), it is observed that the time rate of change of the response functions 
log a(t) and log E ( t ) ,  and the frequency rate of change of log El decreases with 
increasing A. As seen in the figures, decreases in the slopes of response function 
curves with increasing X occur in the time and frequency domains for both simple 
tension and pure shear. These decreases demonstrate that the elastic defor- 
mational functions appearing in eqs. (6), (7),  and (12) increase more rapidly with 
X than the corresponding relaxation deformational dependences. This is con- 
sistent with the decrease of the loss tangent with increasing static deforma- 
tion. 

A more quantitative indication that the time rate of change of log a( t )  de- 
creases with increasing X is seen in Figure 7 for stress relaxation results. The 
figure is a plot of d log a ( t ) / d t  at  t = 1 s vs. X for two pure shear specimens and 
one simple tension specimen. These data show a consistent decreasing trend 
of the inverse relaxation time with increasing X. The simple tension data are 
somewhat more scattered than the pure shear results, but this is due to an in- 
herently lower signal to noise ratio for simple tension tests. The inverse relax- 
ation times at  1 s were calculated from 

-d log a ( t ) / d t  = Am/(A + B )  (19) 

where the constants A ,  B ,  and m were obtained from a nonlinear least squares 
fi t  of the function 

a( t )  = At-m + B (20) 

to the relaxation data a t  each A. B was allowed to vary in such a way as to 
maximize the coefficient of determination corresponding to a linear least squares 
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Fig. 7. The time rate of changes of the log a(t)  vs. h for two pure shear specimens and one simple 
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Fig. 8. The loss modulus vs. frequency in pure shear for the deformation ratios indicated a t  the 
right. In order to facilitate comparison, a single reference curve has been drawn through each data 
set. The shift factors (A) are from bottom to top: 1.433, 1.834, 2.138, 2.360, 2.656, 2.950, and 
3.232. 

f i t  of log[a(t) - B ]  vs. log t .  Values of this coefficient were typically 0.99, indi- 
cating an excellent fit of the data. 

An inspection of the loss modulus data seen in Figure 8 reveals a linear de- 
pendence of log E2 with log v. All of the data, despite the prestrain, are fit well 
by a single reference curve. This shows that Ez is a separable function of time 
and strain effects. Consequently, eq. (8) with its single relaxation function is 
a perfectly adequate representation of loss modulus data. Further, these loss 
modulus results show that the relaxation spectrum is also a separable function 
of time and strain effects. 

Some other viscoelasticity theories express the loss modulus as the sum of 
products of deformation functions and relaxation f u n c t i o n ~ . ~ J ~  When these 
theories are applied to our results, all nontrivial relaxation functions must be 
identical. 

A good test of the suitability of any viscoelasticity theory is whether or not data 
from one strain history can be used to predict results in another history. A 
comparison of prediction vs. experiment for incremental stress-relaxation cor- 
responding to small relative motion superposed on a large statically relaxed 
deformation appears in Figure 9. The incremental relaxation modulus data has 
been compared to theoretical relaxation modulus predictions based on dynamic 
data using the Schwartd approximation14: 

E ( t )  = E ~ ( w )  - 0.566E2(~/2)  + 0 .203Ez(~)  (21) 

where t = l/w. The predicted curves had to be shifted by approximately 1% to 
superpose with the data, but this is certainly within the precision of the mea- 
surements. Note that the theory curve based on the dynamic data for X = 1.329 
is steeper than a similar curve based on h = 2.315 data and does not fit the E ( t )  
vs. t data for the larger A’s. Although our lowest frequency is approximately 
0.06 Hz (corresponding to t N 2.5 s) the overlap of the curves and the data for 
a given value of h is excellent up to 100 s. These results show that a single in- 
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Fig. 9. Incremental relaxation modulus data (m) and theoretical predictions (-) in pure shear 
for the deformations indicated at the right. The steeper curve fitted through all the data is based 
on dynamic data for X = 1.329 and the more gradual curve fitted to the X = 2.315 data is based on 
dynamic data for that deformation. 

tegral constitutive theory characterizes our system. The storage and loss moduli 
data used to calculate the E ( t )  curves in Figure 9 was first smoothed to the 
functions, respectively, 

El =AUm + B (22) 

and 

E2 = CU" (23) 

Unlike the results presented above, it was reported beforel for the same elas- 
tomer compound that the a(t) vs. t and the El vs. u behaviors demonstrated a 
separability of time and strain effects. However, in that report the stress-re- 
laxation data did not go to as short a time, and the dynamic data did not cover 
a fixed frequency range for all predeformations as is characteristic of the corre- 
sponding data in this report. Further, those tests were performed exclusively 
in simple tension, a deformation state more troubled with noise problems when 
experiments are conducted on large servohydraulic test machines. Nevertheless, 
the assumption of a separability of time and strain effects made in Ref. 1 is a good 
approximation for those data because predicted and experimental El values 
agreed to within 11%. 

Although the time dependence of the incremental relaxation modulus and the 
frequency dependence of the storage modulus show a distinct static prestrain 
dependence, the magnitude of the departures from separable behavior is com- 
paratively small. For example, if separable behavior is assumed, an error of 
approximately 8% is introduced into a prediction of El in pure shear for X = 2.315 
when El for X = 1.144 is simply scaled up by a factor proportional to the ratio 
of the elastic moduli a t  these two deformations. From an engineering point of 
view, this error is acceptable. However, such an error will increase as the fre- 
quency increases or the relative magnitude of the relaxation component of a 
material increases. In fact, we have unpublished data for a carbon-black-filled 
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Fig. 10. The loss modulus (0 )  and the relaxation component of the storage modulus (0) vs. the 

static deformation at 1 Hz. 

butyl elastomer where the separability assumption would introduce an error of 
17% over a static prestrain range of X = 1.1-2.1. 

In Figure 10 appears a plot of the log of E2 and El  - E, (A) vs. A. The latter 
quantity is the relaxation component of the storage modulus. The data show 
that both El  - E, and E2 first increase and then tend to level off with increasing 
A. The quantity El - E, was calculated from El  data and from smoothed E ( t )  
vs. X data at t = 2000 s for E,. However, because El - E, is approximately an 
order of magnitude smaller than either of its components, the typical 5% errors 
in E ,  can result in errors approaching 50% for the relaxation component of the 
storage modulus. So the plot of El - E, vs. X must be viewed at  best as quali- 
tative. Actually, the most reliable indication that the deformational dependence 
of the relaxation components of eqs. (6)-(8), and (12) are different than the 
corresponding elastic components is the change in the slopes of response function 
curves on log vs. log scales for a given t or v with changes in the prestrain. This 
has been shown above in Figures 2-6. 

CONCLUSION 

The viscoelastic properties of a natural rubber gum vulcanizate for various 
levels of prestrain have been studied. The loss tangent is found to decrease with 
increasing static deformation ratio. Changes in the slopes of stress-relaxation, 
incremental stress-relaxation curves, and storage modulus vs. frequency curves 
with changes in prestrain are consistent with the deformational dependence of 
the loss tangent; further analysis shows that the deformational dependence of 
the relaxation term in single integral theories increases more slowly with the static 
deformation than the elastic term. The storage modulus, stress-relaxation, and 
incremental stress-relaxation behaviors are not separable functions of time and 
strain effects. However, the loss modulus is a separable function of these ef- 
fects. This shows that only a single relaxation function is needed for a viscoelastic 
characterization of our system. 

Predictions of the incremental relaxation modulus from dynamic data agree 



VISCOELASTICITY OF A GUM VULCANIZATE 2003 

with experiment values to within 1%. This agreement, which is found for all 
prestrain levels, shows that a single integral constitutive theory, such as the FLV 
theory modified by Morman, can characterize the viscoelastic properties of our 
gum vulcanizate. 
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